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Abstract—Algorithm Based Fault Tolerant (ABFT) ap-
proaches promise unparalleled scalability and performance in
failure-prone environments. With the advances in the theoretical
and practical understanding of algorithmic traits enabling such
approaches, a growing number of frequently used algorithms
(including all widely used factorization) have been proven ABFT-
capable. In the context of larger applications, these algorithms
provide a temporal section of the execution when the data is
protected by it’s own intrinsic properties, and can be algorith-
mically recomputed without the need of checkpoints. However,
while typical scientific applications spend a significant fraction
of their execution time in library calls that can be ABFT-
protected, they interleave sections that are difficult or even
impossible to protect with ABFT. As a consequence, the only fault-
tolerance approach that is currently used for these applications
is checkpoint/restart. In this paper we propose a model to
investigate the efficiency of a composite protocol, that alternates
between ABFT and checkpoint/restart for effective protection of
an iterative application composed of ABFT-aware and ABFT-
unaware sections. We validate this model using a simulator.
The model and simulator show that this composite approach
drastically increases the performance delivered by an execution
platform, especially at scale, by providing means to rarefy the
checkpoints while simultaneously decreasing the volume of data
needed to be checkpointed.

I. INTRODUCTION

As processor count increases with each new generation
of high performance computing systems, the long dreaded
reliability wall is materializing, and threatens to derail the
efforts and milestones on the road toward Exascale com-
puting. Despite continuous evolutions, such as improvements
to the individual processor reliability, the integration of a
large number of components leads, by simple probabilistic
amplification, to a stern decrease in the overall capability of
High Performance Computing (HPC) platforms to execute long
running applications spanning a large number of resources.
Already today, leadership systems encompassing millions of
nodes experience a Mean Time Between Failures (MTBF) of a
few hours [1], [2], [3]. Even considering an optimistic scenario
with “fat” nodes, featuring heavily many-core systems and/or
GPU accelerators, projections of Exascale machine exhibit
unprecedented socket counts and will thereby suffer in terms
of reliability [4].

The high performance community is not without resources
to face this formidable threat. Under the already serious
pressure that failures pose to currently deployed systems,
checkpointing techniques have seen a large adoption, and
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many production quality software effectively provide protec-
tion against failures with application-level rollback recovery.
During the execution, periodic checkpoints are taken that
capture the progress of the application. When a failure occurs,
the application is terminated, but can be later restarted from
the last checkpoint. However, checkpointing techniques inflict
severe overhead when failure frequency becomes too high.
Checkpoints generate a significant amount of I/O traffic and
often block the progression of the application; in addition, they
must be taken more and more often as the MTBF decreases in
order to enable steady progress of the application. Analytical
projections clearly show that sustaining Exascale computing
solely with checkpointing will prove challenging [5], [6].

The fault-tolerance community has developed a number of
alternative recovery strategies that do not employ checkpoint
and rollback recovery as their premise. Strategies such as
Algorithm Based Fault Tolerance (ABFT) [7], naturally fault
tolerant iterative algorithms [8], resubmission in master slave
applications, etc., can deliver more scalable performance under
high stress from process failures. As an example, ABFT
protection and recovery activities are not only inexpensive
(typically less than 3% overhead observed in experimental
works [9], [10]), but also have a negligible asymptotic over-
head when increasing node count, which makes them ex-
tremely scalable. This is in sharp contrast with checkpointing,
which suffers from increasing overhead with system size.
ABFT is a useful technique for production systems, offering
protection to important infrastructure software such as the
dense distributed linear algebra library ScaLAPACK [9]. In the
remainder of this paper, without loss of generality, we will use
the term ABFT broadly, so as to describe any technique that
uses algorithm properties to provide protection and recovery
without resorting to rollback recovery.

However, typical HPC applications do spend some time
where they perform computations and data movements that are
incompatible with ABFT protection. The ABFT technique, as
the name indicates, allows for tolerating failures only during
the execution of the algorithm that features the ABFT proper-
ties. Moreover, it then protects only the part of the user dataset
that is managed by the ABFT algorithm. In case of a failure
outside the ABFT-protected operation, all data is lost; in case
of a failure during the ABFT-protected operation, only the data
covered by the ABFT scheme is restored. Unfortunately, these
ABFT-incompatible phases force users to resort to general-
purpose (presumably checkpoint based) approaches as their
sole protection scheme.
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Yet, many HPC applications also spend quite a significant
part of their total execution time inside a numerical library, and
in many cases, these numerical library calls can be effectively
protected by ABFT. We believe that the missing link enabling
fault tolerance at extreme scale is the ability to effectively com-
pose broad spectrum approaches (such as checkpointing) and
algorithm based recovery techniques, as is most appropriate
for different phases within a single application.

Possible target applications are based on iterative meth-
ods applied across an additional dimension such as time or
temperature. Examples of such applications range from heat
dissipation to radar cross-section, all of them being extremely
time consuming applications, with the usual execution time
for real-size problems ranging from several days to weeks. At
the core of such applications, a system of linear equations is
factorized, and the solution is integrated into a larger context,
across the extra dimension. Upon closer inspection of the
execution of such application, it becomes obvious that the
most costly step is the factorization. Conveniently, factorization
algorithms are some of the first algorithms to be extended with
ABFT properties, both in the dense and sparse [11], [12], [13]
linear algebra world.

The main contribution of this paper is the design and
evaluation of a new composite algorithm that allows for taking
advantage of ABFT techniques in applications featuring phases
for which no ABFT algorithm exists. We investigate a compo-
sition scheme corresponding to the above mentioned type of
applications, where the computation alternates between ABFT
protected and checkpoint protected phases. This composite
algorithm imposes forced checkpoints when entering (and
in some cases leaving) library calls that are protected by
ABFT techniques, and uses traditional periodic checkpointing,
if needed, between these calls. When inside an ABFT-protected
call, the algorithm disables all periodic checkpointing. We
describe a fault tolerance protocol that allows for switching
between fault tolerance mechanisms, and depicts how different
parts of the dataset are treated at each stage. Based on
this scheme, we provide a performance model and use it to
predict the expected behavior of such a composite approach
on platforms beyond what is currently possible through exper-
imentation. We validate the model by comparing its predicted
performance to that obtained with a discrete event simulator.

The rest of the paper is organized as follows. We start
with a brief overview of related work in Section II. Then we
provide a detailed description of the composite approach in
Section III, and derive the corresponding analytical perfor-
mance model in Section IV. Section V is devoted to evalu-
ating the approach, comparing the performance of traditional
checkpointing protocols with that of the composite approach
with realistic scenarios. This comparison is performed both an-
alytically, instantiating the model with the relevant parameters,
and in simulation, through an event-based simulator that we
specifically designed for this purpose. We obtain an excellent
correspondence between the model and the simulations, and
we perform a weak-scalability study that demonstrates the full
potential of the composite approach at very large scale. Finally,
we provide concluding remarks in Section VI.
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II. RELATED WORK

Both hardware and software errors can lead to application
failure. The consequence of such errors can take various forms
in a distributed system: a definitive crash of some processes,
erroneous results or messages, or, at the extreme, corrupted
processes exhibiting malignant behavior. In the context of
HPC systems, most memory corruptions are captured by ECC
memory or similar techniques, leaving process crashes as the
most commonly observed type of failures.

The literature is rich in techniques that permit recovering
the progress of applications when crash failures strike. The
most commonly deployed strategy is checkpointing, in which
processes periodically save their state, so that computation
can be resumed from that point when some failure disrupts
the execution. Checkpointing strategies are numerous, ranging
from fully coordinated checkpointing [14] to uncoordinated
checkpoint and recovery with message logging [15]. Despite
a very broad applicability, all of these fault tolerance methods
suffer from the intrinsic limitation that both protection and
recovery generate an I/O workload that grows with failure
probability, and becomes unsustainable at large scale [5], [6]
(even when considering optimizations such as diskless or
incremental checkpointing [16].)

In contrast, Algorithm Based Fault Tolerance (ABFT) is
based on adapting the algorithm so that the application dataset
can be recomputed at any moment, without involving costly
checkpoints. ABFT was first introduced to deal with silent
error in systolic arrays [7]. In recent work, the technique has
been employed to recover from process failures [17], [10], [9]
in dense and sparse linear algebra factorizations [11], [12],
[13], but the idea extends widely to numerous algorithms
employed in crucial HPC applications. So called Naturally
Fault Tolerant algorithms can simply obtain the correct result
despite the loss of portions of the dataset (typical of this are
master-slave programs, but also iterative refinement methods,
like GMRES or CG [8], [18]). Although generally exhibiting
excellent performance and resiliency, ABFT requires that the
algorithm is innately able to incorporate fault tolerance and
therefore stands as a less generalist approach. Another aspect
that hinders its wide adoption and production deployment is
that it can protect an algorithm and its dataset, but applications
assemble many algorithms that operate on different datasets,
and which may not all have a readily available ABFT version
or employ different ABFT techniques.

To the best of our knowledge, this work is the first to
introduce an effective protocol for alternating between general-
ist (typically checkpoint based) fault tolerance for some parts
of the application and custom, tailored techniques (typically
ABFT) for crucial, time consuming computational routines.

Many models are available to understand the behavior
of checkpoint/restart [19], [20], [21], [22], and thereby to
define an optimal checkpoint period. [23] proposes a scala-
bility model to evaluate the impact of failures on application
performance. Compared with these works, we include several
new key parameters to refine the model. A significant new
contribution is to propose a generalized model for a protocol
that alternates between checkpointing and ABFT sections.
Although most ABFT methods have a complete complexity
analysis (in terms of extra-flops, communications incurred
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Figure 1: Typical Application

by both protection activity and per-recovery cost [10], [9]),
modeling the runtime overhead of ABFT methods under failure
conditions has never been proposed. The composite model cap-
tures both the behavior of checkpointing and ABFT phases, as
well as the cost of switching between the two approaches, and
thereby permits investing the prospective gain from employing
this mixed recovery strategy on extreme scale platforms.

III. COMPOSITE APPROACH

We consider a typical HPC application whose execution al-
ternates GENERAL phases and LIBRARY phases (see Figure 1).
During GENERAL phases, we have no information about the
application behavior, and an algorithm-agnostic fault-tolerance
technique, like checkpoint and rollback recovery, must be used.
On the contrary, during LIBRARY phases, we know much more
about the application, and we can apply special-purpose fault-
tolerance techniques, such as ABFT, to ensure resiliency.

During a GENERAL phase, the application can access the
whole memory; during a LIBRARY phase, only the LIBRARY
dataset (a subset of the application memory, which is passed as
a parameter to the library call) is accessed. We call REMAIN-
DER dataset the part of the application memory that does not
belong to the LIBRARY dataset. A strong feature of ABFT is
that, in case of failure, the ABFT algorithm can recompute the
lost ABFT-protected data based only on the LIBRARY dataset
of the surviving processors. The main goal of this paper is to
compare two fault tolerant approaches:

PUREPERIODICCKPT Pure (Coordinated) Periodic Check-
pointing refers to the traditional approach based on coor-
dinated checkpoints taken at periodic intervals, and using
rollback recovery to recover from failures.

ABFT&PERIODICCKPT Algorithm-Based Fault Tolerance &
Periodic Checkpointing refers to the proposed algorithm,
that combines ABFT techniques in LIBRARY phases with
Periodic Checkpointing techniques in GENERAL phases.
It is described below.

Both approaches use PERIODICCKPT techniques, but to a
different extent: while PUREPERIODICCKPT uses PERIODIC-
CKPT throughout the execution, ABFT&PERIODICCKPT uses
it only within GENERAL phases of the application.

A. ABFT&PERIODICCKPT Algorithm

The ABFT&PERIODICCKPT composite approach consists
in alternating between periodic checkpointing and rollback
recovery on one side, and ABFT on the other side, at different
phases of the execution. Every time the application enters
a LIBRARY phase (that can thus be protected by ABFT), a
partial checkpoint is taken to protect the REMAINDER dataset.
The LIBRARY dataset, accessed by the ABFT algorithm,
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Figure 2: ABFT&PERIODICCKPT composite approach

need not be saved in that partial checkpoint, since it will be
reconstructed by the ABFT algorithm inside the library call.

When the call returns, a partial checkpoint covering the
modified LIBRARY dataset is added to the partial checkpoint
taken at the beginning of the call, to complete it and to allow
restarting from the end of the terminating library call. Said
otherwise, the combination of the partial entry and exit check-
points forms a split, but complete, coordinated checkpoint
covering the entire dataset of the application.

If a failure is detected while processes are inside the library
call, the crashed process is recovered using a combination
of rollback recovery and ABFT. ABFT recovery is used to
restore the LIBRARY dataset before all processes can resume
the library call, as would happen with a traditional ABFT
algorithm. The partial checkpoint is used to recover the
REMAINDER dataset (everything except the data covered by
the current ABFT library call) at the time of the call, and
the process stack, thus restoring it before quitting the library
routine, see Figure 2. The goal of this strategy is that ABFT
recovery will spare some of the time spent redoing work, while
periodic checkpointing can be completely de-activated during
the library calls.

During GENERAL phases, regular periodic coordinated
checkpointing is employed to protect against failures. In case
of failure, coordinated rollback recovery brings all processes
back to the last checkpoint (at most back to the split checkpoint
capturing the end of the previous library call).

B. Efficiency Considerations and Application-Specific Im-
provements

A critical component to the efficiency of the PERIODIC-
CKPT algorithm is the duration of the checkpointing interval. A
short interval increases the algorithm overheads, by introducing
many coordinated checkpoints, during which the application
experiences slowdown, but also reduces the amount of time
lost when there is a failure: the last checkpoint is never long
ago, and little time is spent re-executing part of the application.
Conversely, a large interval reduces overhead, but increases
the time lost in case of failure. The PERIODICCKPT protocol
has been extensively studied, and good approximations of the
optimal checkpoint interval exist (known as Young and Daly’s
formula [19], [20]). These approximations are based on the
machine MTBF, checkpoint duration, and other parameters.
We will consider two forms of PERIODICCKPT algorithms: the
PUREPERIODICCKPT algorithm, where a single checkpointing
interval is used consistently during the whole execution, and
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the BIPERIODICCKPT algorithm, where the checkpointing
interval may change during the execution, to fit different
conditions (see Section IV-C, Figures 5 and 6).

In the ABFT&PERIODICCKPT algorithm, we inter-
leave PERIODICCKPT protected phases with ABFT protected
phases, during which periodic checkpointing is de-activated.
Thus, different cases have to be considered:

e When the time spent in a GENERAL phase is larger than
the optimal checkpoint interval, periodic checkpointing
is used during these phases in the case of ABFT-
&PERIODICCKPT (see Figure 3)

e When the time spent in a GENERAL phase is smaller than
the optimal checkpoint interval, the ABFT&PERIODIC-
CKPT algorithm already creates a complete valid check-
point for this phase (formed by combining the entry
and exit partial checkpoints), so the algorithm will not
introduce additional checkpoints (see Figure 4).

Moreover, the ABFT&PERIODICCKPT algorithm forces
(partial) checkpoints at the entry and exit of library calls;
thus if the time spent in a library call is very small, this
approach will introduce more checkpoints than a traditional
PERIODICCKPT approach. The time complexity of library
algorithms usually depends on a few input parameters related
to problem size and resource number, and ABFT techniques
have deterministic, well known time overhead complexity.
Thus, when possible, the ABFT&PERIODICCKPT algorithm
features a safeguard mechanism: if the projected duration of
a library call with ABFT protection (computed at runtime
thanks to the call parameters and the algorithm complexity) is
smaller than the optimal periodic checkpointing interval, then
ABFT is not activated, and the corresponding LIBRARY phase
is protected using the PERIODICCKPT technique only.

Furthermore, since only a subset of the entire dataset is
modified during a library call (the LIBRARY dataset), incre-
mental checkpointing techniques can benefit PERIODICCKPT
approaches. This consists of saving only the subset of the
memory that has been modified since the last checkpoint,
when taking a new process checkpoint. This influences the
duration of the checkpointing operation, and thus the optimal
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checkpoint interval. In our models, we will take this parameter
in consideration.

IV. MODEL

In this section, we detail the application model and the
various parameters used to quantify the cost of checkpointing
and ABFT protection. Then we analytically derive the minimal
overhead for all scenarios. In Section IV-A, we start by defin-
ing some parameters, and then proceed in Section IV-B with
determining the cost of the composite approach. We compare
this cost to that of classical approaches in Section I'V-C.

A. Application and checkpoint parameters

The execution of the application is partitioned into epochs.
Within an epoch, there are two phases for the application:
the first phase is spent outside the library (it is a GENERAL
phase), and only periodic checkpointing can be employed to
protect from failures during that phase. Then the second phase
(a LIBRARY phase) is spent into a compute intensive library
routine that has the potential to be protected by ABFT.

Such a scenario is very general, and many scientific ap-
plications obey this scheme, alternating phases spent outside
and within a library call that can be protected by ABFT
techniques. Since each epoch can be analyzed independently,
without loss of generality, we focus on a single epoch. Let
us introduce some notations. The total duration of the epoch
is To = T + T, where T and T}, are the durations for
the GENERAL and LIBRARY phases, respectively. Let o be
the fraction of time spent in a LIBRARY phase: then we have
TL:OéXTQ andng(l—a) XT().

As mentioned earlier, another important parameter is the
amount of memory that is accessed during the LIBRARY phase
(the LIBRARY dataset). This parameter is important because
the cost of checkpointing in each phase is directly related to
the amount of memory that needs to be protected. The total
memory footprint is M, and the associated checkpointing cost
is C. We write M = M + My, where My, is the size of
the LIBRARY dataset, and M is the size of the REMAINDER
dataset. Similarly, we write C = C, + Cj, where Cp, is the
cost of checkpointing M, and Cy the cost of checkpointing
M;. We can define the parameter p that defines the relative
fraction of memory accessed during the LIBRARY phase by
My, = pM, or, equivalently, by C, = pC.

B. Cost of the composite approach

We now detail the cost of resilience during each phase of
the composite approach. We start with the intrinsic cost of the
method itself, i.e., assuming a fault-free execution. Then we
account for the cost of failures and recovery.

1) Fault-free execution: During the GENERAL phase, we
separate two cases. First, if the duration T of this phase is
short (smaller than Pg, defined below), then we simply take
a partial checkpoint at the end of this phase, before entering
the ABFT-protected mode. This checkpoint is of duration Cf,
because we need to save only the REMAINDER dataset before
switching modes. Otherwise, if T¢; is larger than Pg, we rely
on periodic checkpointing during the GENERAL phase: more
specifically, the regular execution is divided into periods of



duration P = W + C. Here W is the amount of work done
per period, and the duration of each periodic checkpoint is
C = Cf, + Cf, because the whole application footprint must
be saved during a GENERAL phase. The optimal value of
Pg will be computed below. Without loss of generality, we
assume an integer number of periods, and the last periodic
checkpoint replaces that of size C} preceding the switch to
ABFT-protected mode.

Altogether, the length Tg of a fault-free execution of the
GENERAL phase is the following:

e If T < Pg, then TS = T + Ci
o Otherwise, we have 72 periods of length Pg, so that

ff Tg

Te = Pe—C
Now consider the LIBRARY phase: we use the ABFT-
protection algorithm, whose cost is modeled as an affine
function of the time spent: if the computation time of the
library routine is ¢, its execution with the ABFT-protection
algorithm becomes ¢ x t. Here, ¢ > 1 accounts for the
overhead paid per time-unit in ABFT-protected mode. This
linear model for the ABFT overhead fits the existing algorithms

for linear algebra, but other models could be considered.

XPG

(€))

In addition, we pay a checkpoint C7, when exiting the
library call (to save computed data). Therefore, the fault-tree
execution time is

TN = ¢ x T, +Cp, (2)

Finally, the fault-free execution time of the whole epoch is
T =TE+Tr 3)

where Tg and T are computed according to the Equations (1)
and (2).

2) Cost of failures: Next we have to account for failures.
During ¢ time units of execution, the expectation of the number
of failures is %, where p is the mean time between failures of
the platform. Note that if the platform comprises /N identical
resources whose individual mean time between failures is fjng,
then p = &, This relation is agnostic of the granularity of
the resources, which can be anything from a single CPU to a
complex multi-core socket.

For each phase, we have a similar equation: the final
execution time is the fault-free execution time, plus the number
of failures multiplied by the (average) time lost per failure:

. Tﬁnal

TE = TG + —i x Q" 4)
R _ Tﬁnal

Tinal — i —Z x st 5)

Equation (4) reads as follows: Tg is the failure-free exe-
cution time, to which we add thenatime lost due to failures; the
expected number of failures is 1" and 1%t is the average time
lost per failure. We have a simirar reasoning for Equation (5).
Then,t*" and #'*! remain to be computed.

For tlgﬁt (GENERAL phase), we discuss both cases:
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e If Tz < Pg: since we have no checkpoint until the end of
the GENERAL phase, we have to redo the execution from
the beginning of the phase. On average, the failure strikes
at the middle of the phase, hence the expectation of loss

is %g time units. We then add the downtime D (time to
reboot the resource or set up a spare) and the recovery R.
Here R is the time needed for a complete reload from the
checkpoint (and R = C' if read/write operations from/to
the stable storage have the same speed). We derive that

g

5 (6)
If T > Pg: in this case, we have periodic checkpoints,
and the amount of execution which needs to be re-done
after a failure corresponds to half a checkpoint period on
average, so that

te =D+ R+

P
=D+ R+~

For tlf“ (LIBRARY phase), we derive that

tlost

)

tIBS‘ = D + R; + Reconsappr

Here, Rj is the time for reloading the checkpoint of the
REMAINDER dataset (and in many cases Ry = Cf). As for
the LIBRARY dataset, there is no checkpoint to retrieve, but
instead it must be reconstructed from the ABFT checksums,
which takes a time Reconsagrr.

3) Optimization: We check from Equations (2) and (5) that
Tfnal i always a constant. Indeed, we derive that
1

1— D+ Ry +Reconsaprr X (
”w

final dxTL+Cr) (8

As for Tg““l, it depends on the value of Ti: it is constant
when T is small. In that case, we derive that

1
D4R+ TG;CE X (TG + CE)
i
The interesting case is when T is large: in that case, we have
to determine the optimal value of the checkpointing period Pg
which minimizes T, g“"‘l. From Equations (1), (4) and (7), we
derive that

Tgnal —
1

(€))

Tg C D+R+%e
Tgnal = Y Where X = (1 — P7G> (1 — T2
(10)
We rewrite
xoa-8y_Pfe_Cu-D=R)
27 2p whe

The maximum of X gives the optimal period P¥". Differen-
tiating X as a function of Py, we find that it is obtained for

2C(n— D — R) (11

Plugging the value of P¢f" back into Equation (10) provides
the optimal value of 7" when Ty is large.

opt __
P =

- We have successfully computed the final execution time
Tl of our composite approach in all cases. In the exper-
iments provided in Section V, we report the corresponding
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waste. The waste is defined as the fraction of time when plat-
form resources do not progress the application’s computation
(due to the intrinsic overhead of the resilience technique and
to failures that strike the application during execution). The
waste is given by

Ty

WASTE =1 — Thinal

(12)

We conclude this section with a word of caution: the
optimal value of the waste is only a first-order approximation,
not an exact value. Equation (11) is a refined version of
well known formulas by Young [19] and Daly [20]. But
just as in [19], [20], the formula only holds when pu, the
value of the MTBF, is large in front of the other parameters.
Owing to this hypothesis, we can neglect the probability
of several failures occurring during the same checkpointing
period. However, to further assess the accuracy of the model,
when doing simulations in the experiments, we account for all
unlikely scenarios and re-execute the work until each period
is successfully completed.

C. Comparison with conservative approaches

A fully conservative approach, agnostic of the ABFT
library, would perform periodic checkpoints throughout the
execution of the whole epoch. As already mentioned, we call
this approach PUREPERIODICCKPT (see Figure 5). Let T}l‘gl
be the final execution time with this PUREPERIODICCKPT
approach; it can be computed from the results of Section IV-B
as follows:

e No ABFT: a =0 and Tf“al =0

e We optimize T = T4l just as before, with the same
optimal period P, = P&, employed throughout the

epoch.

One can reduce the cost of PUREPERIODICCKPT by notic-
ing that during the LIBRARY epoch, only the LIBRARY dataset
is modified (namely M},). Employing incremental checkpoint-
ing would, in this case, yield a checkpoint cost reduction
(down to Cp). Obviously, with a different cost of check-
pointing, the optimal checkpoint period is different. Therefore,
a semi-conservative approach (called BIPERIODICCKPT, see
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Figure 6) assumes that the checkpoint system can recognize
that the program has entered a library routine that modifies
only a subset of the dataset, and switches to the optimal
checkpoint period according to the application phase. During
the GENERAL phase, the overhead of failures and protection
remains unchanged, but during the LIBRARY phase, the cost
of a checkpoint is reduced to Cp, (instead of C'); however,
the cost of reloading from a checkpoint remains R (since the
different incremental checkpoints must be combined to recover
the entire dataset at rollback time). This leads to two different
checkpointing periods, one for each phase. The new optimal
checkpoint period can be modeled as follows:

° Tg‘gl = Tg“al —I—Tgrj’éﬂc, where Tg“al is computed as before
. TE‘IE“C is computed similarly as Tg“a', but with different

parameters:
1 Pppc
Tl = x T (13
LPC | DR 7pe " Popo— Oy L (13)
o
and the optimal period is
Ppe = V2CL(u— D — R) (14)

V. EVALUATION

In this section, we evaluate the ABFT&PERIODICCKPT
protocol in simulation, and compare its performance to PURE-
PERIODICCKPT and BIPERIODICCKPT in different scenarios.
We start with a description of the simulator and experiments
in Section V-A. Then we detail the results of the comparison
of the different protocols in Section V-B. In Section V-B,
we compare simulation results and predicted performance
results analytically computed from the models presented in
Sections IV-B and IV-C, and we do obtain a very good
correspondence. Finally, we conduct a weak scalability study
in Section V-C, in order to assess the performance of the
various protocols at very large scale.

A. Validation

To validate the performance models, we have implemented
a simulator, based on discrete event simulation, that reproduces
the behavior of the different algorithms, even in cases that
the performance models cannot cover. Indeed, as mentioned
in Section IV-B3, a few approximations have been made
when considering the mathematical models, to make their
expressions tractable. For example, the models assume that
a single failure may hit the system, until its recovery. The
effect of events like overlapping failures, which is uncommon
when the MTBF is large enough, is neglected in the proposed
performance model. The simulator, however, takes these events
into account, accurately reproducing the corresponding costs.

In the simulator, failures are generated following an Ex-
ponential distribution law parameterized to fix the MTBF to
a given value. Then the application, and the chosen fault
tolerance mechanism, are unfolded on that set of failures,
triggering rollbacks, and other protocol-specific overheads, to
measure the duration of the execution. For each scenario, and
each parameter, the average termination time over a thousand
executions is returned by the simulator.

We present in [24] an exhaustive evaluation of the different
parameters independently, comparing the results as predicted



by the models, and the simulation. In this paper, we focus the
analysis on a smaller subset. We consider an application that
executes for a week when there is neither a fault tolerance
mechanism nor any failure. The time to take a checkpoint
and rollback the whole application is 10 minutes (C, R), a
consistent order of magnitude for current applications at large
scale [5]. We consider that the ratio of the memory that is
modified by the LIBRARY phase (p) is fixed at 0.8 (to vary a
single parameter at a time in our simulation), and the overhead
due to ABFT is ¢ = 1.03 (again, typical from production
deployments [9]).

Figure 7 presents 6 evaluations of that scenario. The MTBF
of the system varies on the x-axis, and the ratio of time spent
in the LIBRARY phase («) on the y-axis. In Figures 7a to 7f,
we present the waste predicted by the model, and validate
the model by observing the difference between the model
prediction and the waste measured from the simulator for
a given combination of parameters and protocol. From the
validation perspective, the figures on the right side show an
excellent correspondence between predicted (from the model)
and actual (obtained from simulation) values. For small MTBF
values, the model tends to slightly underestimate the waste.
That underestimation does not exceed 12% in the worst case
and quickly decreases to below 5%. Qualitatively, this under-
estimation is expected, because an approximation that must be
done to allow a closed formula representation is to assume that
failures will not hit processors while they are recovering from
a previous failure. In reality, when the MTBF is very small,
this event can sometimes happen, forcing the system to start
a new recovery, and introducing additional waste.

B. PUREPERIODICCKPT, BIPERIODICCKPT, and ABFT-
&PERIODICCKPT

Consider Figures 7a and 7b, that represent the waste of
PUREPERIODICCKPT as a function of the MTBF (i) and the
amount of time spent in the LIBRARY routine («): it is obvious
that the PUREPERIODICCKPT protocol, which is oblivious of
the different phases of the application, presents a waste that
is only a function of the MTBF. As already evaluated and
explained in many other works, when the MTBF increases,
the waste decreases, because the overheads due to failure
handling tend toward 0, and the optimal checkpointing period
can increase significantly, reducing the waste due to resilience
in a fault-free execution.

Comparatively, for the protocol BIPERIODICCKPT pre-
sented in Figures 7c and 7d, the parameter « affects the optimal
periods used both in the LIBRARY and general phases. Since
the cost of checkpointing for these phases differs by 20%
(Cr = 0.8C), when the relative time spent in the GENERAL
routine increases (« is closer to 0), then the protocol behaves
more and more as PUREPERIODICCKPT. When « is almost
1, on the contrary, the behavior is similar to PUREPERIODIC-
CKPT, but with a checkpoint cost reduction of 20%. Thus, the
waste becomes minimal when « tends toward 1.

In Figures 7e and 7f, we present the waste for the ABFT-
&PERIODICCKPT protocol. When « tends toward 0, as above,
the protocol behaves as PUREPERIODICCKPT, and no benefit
is shown. When 50% of the time is spent in the LIBRARY
routine, the benefit, compared to PUREPERIODICCKPT, but
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also compared to BIPERIODICCKPT, is already visible: for
50% of the failures (when the failure hits during a LIBRARY
phase), the cost of recovery is reduced to 20% of the rollback
cost, plus the constant overhead of ABFT recovery. Moreover,
periodic checkpointing is disabled 50% of the time, producing
yet another gain compared to BIPERIODICCKPT which still
requires saving 80% of the memory periodically. In this case,
the gain in checkpoint avoidance compensates for the waste
induced by additional computations done during the LIBRARY
phase to provide the ABFT protection. When considering the
extreme case of 100% of the time spent in the LIBRARY
phases, the overhead tends to reach the overhead induced by
the slowdown factor of ABFT (¢ = 1.03, hence 3% overhead).

C. Weak Scalability

As illustrated above, the ABFT&PERIODICCKPT ap-
proach exhibits better performance when a significant time
is spent in the LIBRARY phase, and when the failure rate
implies a small optimal checkpointing period. If the check-



# Faults

20 Nb Faults PeriodicCkpt s J
Nb Faults Bi-PeriodicCkpt

20 - Nb Faults ABFT PeriodicCkpt s

0 nnl

Fenud\chpl‘ —_—
Bi-PeriodicCkpt
ABFT PeriodicCkpt

\\

Waste

10k 100k

Nodes
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pointing period is large (because failures are rare), or if the
duration of the LIBRARY phase is small, then the optimal
checkpointing interval becomes larger than the duration of
the LIBRARY phase, and the algorithm automatically resorts
to the BIPERIODICCKPT protocol. This can also be the case
when the epoch itself is smaller than (or of the same order of
magnitude as) the optimal checkpointing interval (i.e., when
the application does a fast switching between LIBRARY and
GENERAL phases).

However, consider such an application that frequently
switches between (relatively short) LIBRARY and GENERAL
phases. When porting that application to a future larger scale
machine, the number of nodes that are involved in the ex-
ecution will increase, and at the same time, the amount of
memory on which the ABFT operation is applied will grow
(following Gustafson’s law). This has a double impact: the
time spent in the ABFT routine increases, while at the same
time, the MTBF of the machine decreases. In this section,
we evaluate quantitatively how this scaling factor impacts the
relative performance of the ABFT&PERIODICCKPT, PURE-
PERIODICCKPT and BIPERIODICCKPT algorithms. Owing to
the good correspondence between results from the model and
results from the simulation, we (confidently) use only the
model in this scalability study.

First, we consider the case of an application where the
LIBRARY and GENERAL phases scale at the same rate. We take
the example of linear algebra kernels operating on 2D-arrays
(matrices), that scale in O(n3) of the array order n (in both
phases). Following a weak scaling approach, the application
uses a fixed amount of memory M;,q per node, and when
increasing the number x of nodes, the total amount of memory
increases linearly as M = xM;,4. Thus O(n?) = O(z), and
the parallel completion time of the O(n?) operations, assuming
perfect parallelism, scales in O(+/z).

To instantiate this case, we take an application that would
iterate over a thousand epochs, each epoch consisting of 80%
of a LIBRARY phase, and 20% of a GENERAL phase. At
10,000 nodes, the duration of a single epoch is arbitrarily
set to 1 minute, and the scaling factor of the corresponding
O(n?) operation is applied, when varying the number of nodes
that participate in the computation. We set the duration of the
complete checkpoint and rollback (C' and R, respectively) to
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1 minute when 10,000 nodes are involved, and we scale this
value linearly with the total amount of memory, when varying
the number of nodes. The MTBF at 10,000 nodes is set to 1
failure every day, and this also scales linearly with the number
of components. The ABFT overheads, and the downtime, are
set to the same values as in the previous section, and 80%
of the application memory (M) is touched by the LIBRARY
phase.

Given these parameters, Figure 8 shows (i) the rela-
tive waste of PUREPERIODICCKPT, BIPERIODICCKPT, and
ABFT&PERIODICCKPT, as a function of the number of
nodes, and (ii) the average number of faults that each execution
will have to deal with to complete. The expected number of
faults is the ratio of the application duration by the platform
MTBF (which decreases when the number of nodes increases,
generating more failures). The fault-free execution time in-
creases with the number of nodes (as noted above), and the
fault-tolerant execution time is also increased by the waste
due to the protocol. Thus, the total execution time of PURE-
PERIODICCKPT or BIPERIODICCKPT is larger at 1 million
nodes than the total execution time of ABFT&PERIODICCKPT
at the same scale, which explains why more failures happen
for these protocols.

When comparing BIPERIODICCKPT and PUREPERIODIC-
CKPT, one can see the benefit of incremental checkpointing,
which spares about 20% of the checkpoint time during 80%
of the checkpoints: this benefit shows up by a small linear
reduction of the waste for BIPERIODICCKPT. However, both
approaches perform similarly with respect to the number of
nodes in this weak-scaling experiment.

Up to approximately 100,000 nodes, the fault-free over-
head of ABFT negatively impacts the waste of the ABFT-
&PERIODICCKPT approach, compared to BIPERIODICCKPT
or PUREPERIODICCKPT. Because the MTBF of the platform
is very large compared to the application execution time
(and hence to the duration of each LIBRARY phase), periodic
checkpointing approaches have a very large checkpointing
interval, introducing very few checkpoints, thus a small failure-
free overhead. Because failures are rare, the cost due to time
lost at rollbacks does not overcome the benefits of a small
failure-free overhead, while the ABFT technique must pay
the linear overhead of maintaining the redundancy information
during the whole computation of the LIBRARY phase.

Once the number of nodes reaches 100,000, however, two
things happen: failures become more frequent, and the time
lost due to failures starts to impact rollback recovery ap-
proaches. Thus, the optimal checkpointing interval of periodic
checkpointing becomes smaller, introducing more checkpoint-
ing overheads. During 80% of the execution, however, the
ABFT&PERIODICCKPT approach can avoid these overheads,
and when they reach the level of linear overheads due to
the ABFT technique, ABFT&PERIODICCKPT starts to scale
better than both periodic checkpointing approaches.

All protocols have to resort to checkpointing during the
GENERAL phase of the application. Thus, if failures hit during
this phase (which happens 20% of the time in this example),
they will all have to resort to rollbacking and lose some com-
putation time. Hence, when the number of nodes increases and
the MTBF decreases, eventually, the time spent in rollbacking
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and re-computing, which is linear in the number of faults, will
increase the waste of all algorithms. However, one can see that
this part is better controlled by the ABFT&PERIODICCKPT
algorithm.

Next we consider the case of an unbalanced GENERAL
phase: consider an application where the LIBRARY phase has a
cost O(n®) (where n is the problem size), as above, but where
the GENERAL phase consists of O(n?) operations. This kind of
behavior is reflected in many applications where matrix data is
updated or modified between consecutive calls to computation
kernels. Then, the time spent in the LIBRARY phase will
increase faster with the number of nodes than the time spent
in the GENERAL phase, varying «. This is what is represented
in Figure 9. We took the same scenario as above for Figure 8,
but « is a function of the number of nodes chosen such that
at 10,000 nodes, o = Tgnal / Tl — (.8, and everywhere,
Tinal — O(n?) = O(y/x), and T = O(n?) = O(1). We
give the value of o under the number of nodes, to show how
the fraction of time spent in LIBRARY phases increases with
the number of nodes.

The PUREPERIODICCKPT protocol is not impacted by this
change, and behaves exactly as in Figure 8. Note, however,
that 7'final = 7final 4 7final brogresses at a lower rate in this
scenario than in the previous scenario, because ngl does
not increase with the number of nodes. Thus, the average
number of faults observed for all protocols is much smaller
in this scenario. Because more and more time (relative to the
duration of the application) is spent in the LIBRARY phase,
where 20% of the memory does not need to be saved, the
BIPERIODICCKPT algorithm increases its benefit, compared
to PUREPERIODICCKPT: less overhead is paid for checkpoints
that happen during LIBRARY phases, and the optimal period
of checkpointing during these phases are longer. The cost of
failures, however, remains the same, since the state of the entire
application (LIBRARY memory, and REMAINDER memory)
must be restored at rollback time.

The efficiency on ABFT&PERIODICCKPT, however, is
more significant. The latter protocol benefits from the in-
creased o ratio in both cases: since more time is spent in the
LIBRARY phase, periodic checkpointing is de-activated for rel-
atively longer periods. Moreover, this increases the probability
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that a failure will happen during the LIBRARY phase, where the
recovery cost is greatly reduced using ABFT techniques. Thus,
ABFT&PERIODICCKPT is capable of mitigating failures at a
much smaller overhead than simple periodic checkpointing,
and more importantly with better scalability.

In both previous evaluations, we have always considered
that the checkpointing (and rollback recovery) time is propor-
tional to the global amount of memory that needs to be saved
in these checkpoints. This is realistic, if the checkpoint needs
to be stored in a remote place, to guarantee its availability
after a failure occurs. In this case, the interconnect (or the
bandwidth capacity of the disks) eventually becomes a bottle-
neck, and the saving time becomes proportional to the number
of computing resources saving their state simultaneously. To
mitigate the negative effect of this bottleneck, system designers
are studying a couple of alternative approaches. One consists of
featuring each computing node with local storage capability,
ensuring through the hardware that this storage will remain
available during a failure of the node. Another approach con-
sists of using the memory of the other processors to store the
checkpoint, pairing nodes as “buddies,” thus taking advantage
of the high bandwidth capability of the high speed network
to design a scalable checkpoint storage mechanism [25], [26],
[27], [28].

Thus, it might be reasonable to consider in the future
that the checkpoint storage time will not increase with the
number of nodes, but on the contrary will remain constant.
This is the scenario that we contemplate in Figure 10. The
scenario is identical to the previous scenario of Figure 9, but
the checkpoint time (C) and rollback recovery time (R) is
independent of the number of nodes that checkpoint, and is
fixed at 60s. One can see a noteworthy benefit on both periodic
checkpointing protocols: even at 1 million nodes, the waste
due to the protocols and the few faults that do occur during
the execution (up to 6 failures in average during the whole
execution) both add up to below 15%. At the same time, the
ABFT technique continues to introduce its constant overhead
(due to additional computation) during the whole execution,
and appears to present a waste that is almost constant when
the number of nodes increases.

Figure 10 shows that PUREPERIODICCKPT and BI-



PERIODICCKPT are less efficient than ABFT&PERIODIC-
CKPT at 1 million nodes, despite the perfectly scalable check-
pointing hypothesis. To reach comparable performance, we
must reduce checkpointing overhead by a factor of 10 and
use C = R = 6s. Such low figures can only be achieved
through new hardware (like NVRAM), and new incremental
and hierarchical checkpointing protocols.

VI. CONCLUSION

In this paper, we have formalized and quantified a novel
method of composing fault tolerance approaches for applica-
tions that alternate between ABFT-aware and ABFT-unaware
sections, where each of these sections is protected by its own
mechanism, ABFT in one case and checkpoint/restart in the
other. A performance model has been derived for such methods
and thoughtfully validated using a simulator developed for
this scope. We have compared our composite approach with
a traditional periodic checkpointing approach using rollback
and recovery, under different plausible scenarios. Our model
predicts that the cost of a “checkpoint only” approach will
maintain a reasonable overhead only under highly optimistic
assumptions, where the checkpointing cost stagnates when the
number of computational resources increases. Under more real-
istic assumptions, where the checkpointing cost increases with
the number of resources, the composite approach will provide
significantly greater benefits compared with checkpoint/restart,
by minimizing the waste and thus increasing the platform
throughput. Our weak scalability study shows that the gain
of the composite approach will continue to grow with the
increase in the number of computing resources, making it a
more plausible and desirable approach at very large scale.
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